<b id="sidpw"></b>

<b id="sidpw"></b><tt id="sidpw"><address id="sidpw"></address></tt>
<tt id="sidpw"></tt>

<b id="sidpw"></b>

<b id="sidpw"></b>

自動駕駛各傳感器的優缺點(主流自動駕駛汽車一般有幾種傳感器)

自動駕駛 661
今天給各位分享自動駕駛各傳感器的優缺點的知識,其中也會對主流自動駕駛汽車一般有幾種傳感器進行解釋,如果能碰巧解決你現在面臨的問題,別忘了關注本站,現在開始吧!本文目錄一覽: 1、有人監督自動駕駛系統的優缺點?

今天給各位分享自動駕駛各傳感器的優缺點的知識,其中也會對主流自動駕駛汽車一般有幾種傳感器進行解釋,如果能碰巧解決你現在面臨的問題,別忘了關注本站,現在開始吧!

本文目錄一覽:

有人監督自動駕駛系統的優缺點?

自動駕駛的優點:

一,無差錯駕駛

自動駕駛汽車內的車載計算機系統可以在幾秒鐘內進行了無數次計算。該系統背后的技術復雜而高效。車載計算機會告訴你當前的速度,附近汽車的活動,甚至你離物體有多遠。換言之,計算機的精度導致無差錯駕駛。

二,增強道路安全

大多數交通事故都是由于人為失誤造成的。自動駕駛汽車將人為因素排除在外,大大減少了道路事故。事實上,谷歌的自動駕駛汽車已經行駛了超過了7萬英里的無事故里程。汽車內部的現代傳感器技術使汽車能夠精確掃描周圍環境,進而可以顯著改善道路安全。

三,對環境更有利

自動駕駛汽車的最好一個方面是不依賴任何有害的化石燃料,相反,這些汽車使用電作為主要能源。因此,這些汽車更環保,維護成本也更低。此外,自動駕駛汽車消耗更少的電池電量,產生零排放,從而有助于減少空氣污染。

自動駕駛的缺點

一,昂貴

自動駕駛汽車無疑是未來令人興奮的交通方式,但是,它們也非常昂貴。用于制造這些汽車的復雜技術成本高得令人難以置信。目前,無人駕駛汽車是普通用戶無法企及的。然而,最終,制造這些汽車的技術可能會變得越來越便宜。

二,技術故障的風險

雖然自動駕駛汽車所涉及的技術無疑是令人興奮的,但它也充滿了風險。汽車在使用一段時間后,很有可能會在編程過程中出現故障。這些小故障或漏洞在手機和電腦中可能不是什么大問題,然而,駕駛自動駕駛汽車時出現故障可能會導致危險事故。

三,法律問題

即使我們設法解決了自動駕駛汽車的故障,也還是會有發生事故后的責任問題。換句話說,誰來承擔責任?現實情況是,我們還沒有為這種情況建立適當的法規條文。當地的交通管理機構需要找到一種方法來對這些汽車進行監管。此外,他們還需要確保這些自動駕駛汽車的性能符合廣告的要求,同時牢記公共安全。這可能會導致復雜的法律問題。

自動駕駛技術基本知識介紹

自動駕駛車,是一種無須人工干預而能夠感知其周邊環境和導航的車輛。它利用了包括雷達、激光、超聲波、GPS、里程計、計算機視覺等多種技術來感知其周邊環境,通過先進的計算和控制系統,來識別障礙物和各種標識牌,規劃合適的路徑來控制車輛行駛。

美國汽車工程師協會(SAE,Society of Automotive Engineers),則將自動駕駛劃分為 0~5 共六級。

Level 0:無自動化(No Automation)

沒有任何自動駕駛功能或技術,人類駕駛員對汽車所有功能擁有絕對控制權。駕駛員需要負責轉向、加速、制動和觀察道路狀況。任何駕駛輔助技術,例如現有的前向碰撞預警、車道偏離預警,以及自動雨刷和自動前燈控制等,雖然有一定的智能化,但是仍需要人來控制車輛,所以都仍屬于 Level 0。

Level 1:駕駛輔助(Driver Assistance)

駕駛員仍然對行車安全負責,不過可以授權部分控制權給系統管理,某些功能可以自動進行,比如常見的自適應巡航(Adaptive Cruise Control,ACC)、應急剎車輔助(Emergency Brake Assist,EBA)和車道保持(Lane-Keep Support,LKS)。Level 1 的特點是只有單一功能,駕駛員無法做到手和腳同時不操控。

Level 2:部分自動化(Partial Automation)

人類駕駛員和汽車來分享控制權,駕駛員在某些預設環境下可以不操作汽車,即手腳同時離開控制,但駕駛員仍需要隨時待命,對駕駛安全負責,并隨時準備在短時間內接管汽車駕駛權。比如結合了 ACC 和 LKS 形成的跟車功能。Level 2 的核心不在于要有兩個以上的功能,而在于駕駛員可以不再作為主要操作者。

Level 3:有條件自動化(Conditional Automation)

在有限情況下實現自動控制,比如在預設的路段(如高速和人流較少的城市路段),汽車自動駕駛可以完全負責整個車輛的操控,但是當遇到緊急情況,駕駛員仍需要在某些時候接管汽車,但有足夠的預警時間,如即將進入修路的路段(Road work ahead)。Level 3 將解放駕駛員,即對行車安全不再負責,不必監視道路狀況。

Level 4:高度自動化(High Automation)

自動駕駛在特定的道路條件下可以高度自動化,比如封閉的園區、高速公路、城市道路或固定的行車線路等,這這些受限的條件下,人類駕駛員可以全程不用干預。

Level 5:完全自動化(Full Automation)

對行車環境不加限制,可以自動地應對各種復雜的交通狀況和道路環境等,在無須人協助的情況下由出發地駛向目的地,僅需起點和終點信息,汽車將全程負責行車安全,并完全不依賴駕駛員干涉,且不受特定道路的限制。

注釋:DDT(Dynamic driving task):動態駕駛任務,指汽車在道路上行駛所需的所有實時操作和策略上的功能,不包括行程安排、目的地和途徑地的選擇等戰略上的功能。

無人駕駛系統的核心可以概述為三個部分:感知(Perception),規劃(Planning)和控制(Control),這些部分的交互以及其與車輛硬件、其他車輛的交互可以用下圖表示:

感知是指無人駕駛系統從環境中收集信息并從中提取相關知識的能力。其中,環境感知(Environmental Perception)特指對于環境的場景理解能力,例如障礙物的位置,道路標志/標記的檢測,行人車輛的檢測等數據的語義分類。 一般來說,定位(Localization)也是感知的一部分,定位是無人車確定其相對于環境的位置的能力。

為了確保無人車對環境的理解和把握,無人駕駛系統的環境感知部分通常需要獲取周圍環境的大量信息,具體來說包括:障礙物的位置,速度以及可能的行為,可行駛的區域,交通規則等等。無人車通常是通過融合激光雷達(Lidar),相機(Camera),毫米波雷達(Millimeter Wave Radar)等多種傳感器的數據來獲取這些信息。

車載雷達傳感器功能及優缺點各有不同,相關比較如下表所示:

激光雷達 是一類使用激光進行探測和測距的設備,它能夠每秒鐘向環境發送數百萬光脈沖,它的內部是一種旋轉的結構,這使得激光雷達能夠實時的建立起周圍環境的3維地圖。

通常來說,激光雷達以10Hz左右的速度對周圍環境進行旋轉掃描,其掃描一次的結果為密集的點構成的3維圖,每個點具備(x,y,z)信息,這個圖被稱為點云圖(Point Cloud Graph),如下圖所示,是使用Velodyne VLP-32c激光雷達建立的一個點云地圖:

激光雷達因其可靠性目前仍是無人駕駛系統中最重要的傳感器,然而,在現實使用中,激光雷達并不是完美的,往往存在點云過于稀疏,甚至丟失部分點的問題,對于不規則的物體表面,使用激光雷達很難辨別其模式,另一個比較大的挑戰是一個比較大的挑戰是激光雷達感知范圍比較近,感知范圍平均在 150m 左右,這取決于環境和障礙物的不同。激光雷達在角分辨度上也遠遠不及照相機。激光雷達對環境的敏感度也是比較大的,例如雨天中,車輛行駛中濺起來的水花,在激光雷達上都是有噪點的。

毫米波雷達 通過發射電磁波并通過檢測回波來探測目標的有無、距離、速度和方位。由于毫米波雷達技術相對成熟,成本較低,并且在不良天氣下表現良好,因此成為感知設備中重要的一環。但由于其分辨率較低,因此不能作為激光雷達的替代品,而是激光雷達的重要補充設備。

攝像機 根據鏡頭和布置方式的不同主要有以下四種:單目攝像機、雙目攝像機、三目攝像機和環視攝像機。

單目攝像機 模組只包含一個攝像機和一個鏡頭。由于很多圖像算法的研究都是基于單目攝像機開發的,因此相對于其他類別的攝像機,單目攝像機的算法成熟度更高。但是單目有著兩個先天的缺陷。一是它的視野完全取決于鏡頭。焦距短的鏡頭,視野廣,但缺失遠處的信息。反之亦然。因此單目攝像機一般選用適中焦距的鏡頭。二是單目測距的精度較低。攝像機的成像圖是透視圖,即越遠的物體成像越小。近處的物體,需要用幾百甚至上千個像素點描述;而處于遠處的同一物體,可能只需要幾個像素點即可描述出來。這種特性會導致,越遠的地方,一個像素點代表的距離越大,因此對單目來說物體越遠,測距的精度越低。

雙目攝像機 由于單目測距存在缺陷,雙目攝像機應運而生。相近的兩個攝像機拍攝物體時,會得到同一物體在攝像機的成像平面的像素偏移量。有了像素偏移量、相機焦距和兩個攝像機的實際距離這些信息,根據數學換算即可得到物體的距離。雖然雙目能得到較高精度的測距結果和提供圖像分割的能力,但是它與單目一樣,鏡頭的視野完全依賴于鏡頭。而且雙目測距原理對兩個鏡頭的安裝位置和距離要求較多,這就會給相機的標定帶來麻煩。

三目攝像機 由于單目和雙目都存在某些缺陷,因此廣泛應用于無人駕駛的攝像機方案為三目攝像機。三目攝像機其實就是三個不同焦距單目攝像機的組合。根據焦距不同,每個攝像機所感知的范圍也不盡相同。對攝像機來說,感知的范圍要么損失視野,要么損失距離。三目攝像機能較好地彌補感知范圍的問題。因此在業界被廣泛應用。正是由于三目攝像機每個相機的視野不同,因此近處的測距交給寬視野攝像頭,中距離的測距交給主視野攝像頭,更遠的測距交給窄視野攝像頭。這樣一來每個攝像機都能發揮其最大優勢。三目的缺點是需要同時標定三個攝像機,因而工作量更大。其次軟件部分需要關聯三個攝像機的數據,對算法要求也很高。

環視攝像機, 之前提到的三款攝像機它們所用的鏡頭都是非魚眼的,環視攝像機的鏡頭是魚眼鏡頭,而且安裝位置是朝向地面的。某些高配車型上會有“360°全景顯示”功能,所用到的就是環視攝像機。安裝于車輛前方、車輛左右后視鏡下和車輛后方的四個魚眼鏡頭采集圖像,魚眼攝像機為了獲取足夠大的視野,代價是圖像的畸變嚴重。環視攝像機的感知范圍并不大,主要用于車身5~10米內的障礙物檢測、自主泊車時的庫位線識別等。

為了理解點云信息,通常來說,我們對點云數據進行兩步操作:分割(Segmentation)和分類(Classification)。其中,分割是為了將點云圖中離散的點聚類成若干個整體,而分類則是區分出這些整體屬于哪一個類別(比如說行人,車輛以及障礙物)。分割算法可以被分類如下幾類:

在完成了點云的目標分割以后,分割出來的目標需要被正確的分類,在這個環節,一般使用機器學習中的分類算法,如支持向量機(Support Vector Machine,SVM)對聚類的特征進行分類,最近幾年由于深度學習的發展,業界開始使用特別設計的卷積神經網絡(Convolutional Neural Network,CNN)對三維的點云聚類進行分類。

實踐中不論是提取特征-SVM的方法還是原始點云-CNN的方法,由于激光雷達點云本身解析度低的原因,對于反射點稀疏的目標(比如說行人),基于點云的分類并不可靠,所以在實踐中,我們往往融合雷達和相機傳感器,利用相機的高分辨率來對目標進行分類,利用Lidar的可靠性對障礙物檢測和測距,融合兩者的優點完成環境感知。

無人駕駛系統中,我們通常使用圖像視覺來完成道路的檢測和道路上目標的檢測。道路的檢測包含對道路線的檢測(Lane Detection),可行駛區域的檢測(Drivable Area Detection);道路上路標的檢測包含對其他車輛的檢測(Vehicle Detection),行人檢測(Pedestrian Detection),交通標志和信號的檢測(Traffic Sign Detection)等所有交通參與者的檢測和分類。

車道線的檢測涉及兩個方面: 第一是識別出車道線,對于彎曲的車道線,能夠計算出其曲率,第二是確定車輛自身相對于車道線的偏移(即無人車自身在車道線的哪個位置) 。一種方法是抽取一些車道的特征,包括邊緣特征(通常是求梯度,如索貝爾算子),車道線的顏色特征等,使用多項式擬合我們認為可能是車道線的像素,然后基于多項式以及當前相機在車上掛載的位置確定前方車道線的曲率和車輛相對于車道的偏離。

可行駛區域的檢測目前的一種做法是采用深度神經網絡直接對場景進行分割,即通過訓練一個逐像素分類的深度神經網絡,完成對圖像中可行駛區域的切割。

交通參與者的檢測和分類目前主要依賴于深度學習模型,常用的模型包括兩類:

傳感器層將數據以一幀幀、固定頻率發送給下游,但下游是無法拿每幀的數據去進行決策或者融合的。因為傳感器的狀態不是100%有效的,如果僅根據某一幀的信號去判定前方是否有障礙物(有可能是傳感器誤檢了),對下游決策來說是極不負責任的。因此上游需要對信息做預處理,以保證車輛前方的障得物在時間維度上是一直存在的, 而不是一閃而過。

這里就會使用到智能駕駛領域經常使用到的一個算法 卡爾曼濾波。

卡爾曼濾波(Kalman filter) 是一種高效率的遞歸濾波器(自回歸濾波器),它能夠從一系列的不完全及包含噪聲的測量中,估計動態系統的狀態??柭鼮V波會根據各測量量在不同時間下的值,考慮各時間下的聯合分布,再產生對未知變數的估計,因此會比只以單一測量量為基礎的估計方式要準。

卡爾曼濾波在技術領域有許多的應用。常見的有飛機及太空船的導引、導航及控制??柭鼮V波也廣為使用在時間序列的分析中,例如信號處理及計量經濟學中??柭鼮V波也是機器人運動規劃及控制的重要主題之一,有時也包括在軌跡最佳化??柭鼮V波也用在中軸神經系統運動控制的建模中。因為從給與運動命令到收到感覺神經的回授之間有時間差,使用卡爾曼濾波有助于建立符合實際的系統,估計運動系統的目前狀態,并且更新命令。

信息融合是指把相同屬性的信息進行多合一操作。

比如攝像機檢測到了車輛正前方有一個障礙物,毫米波也檢測到車輛前方有一個障礙物,激光雷達也檢測到前方有一個障礙物,而實際上前方只有一個障礙物,所以我們要做的是把多傳感器下這輛車的信息進行一次融合,以此告訴下游,前面有輛車,而不是三輛車。

坐標轉換在自動駕駛領域十分重要。

傳感器是安裝在不同地方的比如超聲波雷達(假如當車輛右方有一個障礙物,距離這個超聲波雷達有3米,那么我們就認為這個障礙物距離車有3米嗎?并不一定,因為決策控制層做車輛運動規劃時,是在車體坐標系下做的(車體坐標系-般以后軸中心為O點)所以最終所有傳感器的信息,都是需要轉移到自車坐標系下的。因此感知層拿到3m的障礙物位置信息后,必須將該章礙物的位置信息轉移到自車坐標系下,才能供規劃決策使用。 同理,攝像機一般安裝在擋風玻璃下面,拿到的數據也是基于攝像機坐標系的,給下游的數據,同樣需要轉換到自車坐標系下。

在無人車感知層面,定位的重要性不言而喻,無人車需要知道自己相對于環境的一個確切位置,這里的定位不能存在超過10cm的誤差,試想一下,如果我們的無人車定位誤差在30厘米,那么這將是一輛非常危險的無人車(無論是對行人還是乘客而言),因為無人駕駛的規劃和執行層并不知道它存在30厘米的誤差,它們仍然按照定位精準的前提來做出決策和控制,那么對某些情況作出的決策就是錯的,從而造成事故。由此可見,無人車需要高精度的定位。

目前使用最廣泛的無人車定位方法當屬融合 全球定位系統(Global Positioning System,GPS)和慣性導航系統(Inertial Navigation System)定位方法 ,其中,GPS的定位精度在數十米到厘米級別之間,高精度的GPS傳感器價格也就相對昂貴。融合GPS/IMU的定位方法在GPS信號缺失,微弱的情況下無法做到高精度定位,如地下停車場,周圍均為高樓的市區等,因此只能適用于部分場景的無人駕駛任務。

地圖輔助類定位算法是另一類廣泛使用的無人車定位算法, 同步定位與地圖構建(Simultaneous Localization And Mapping,SLAM) 是這類算法的代表,SLAM的目標即構建地圖的同時使用該地圖進行定位,SLAM通過利用已經觀測到的環境特征確定當前車輛的位置以及當前觀測特征的位置。這是一個利用以往的先驗和當前的觀測來估計當前位置的過程,實踐上我們通常使用貝葉斯濾波器(Bayesian filter)來完成,具體來說包括卡爾曼濾波(Kalman Filter),擴展卡爾曼濾波(Extended Kalman Filter)以及粒子濾波(Particle Filter)。SLAM雖然是機器人定位領域的研究熱點,但是在實際無人車開發過程中使用SLAM定位卻存在問題,不同于機器人,無人車的運動是長距離的,大開放環境的。在長距離的運動中,隨著距離的增大,SLAM定位的偏差也會逐漸增大,從而造成定位失敗。

在實踐中,一種有效的無人車定位方法是改變原來SLAM中的掃描匹配類算法,具體來說,我們不再在定位的同時制圖,而是事先使用傳感器如激光雷達對區域構建點云地圖,通過程序和人工的處理將一部分“語義”添加到地圖中(例如車道線的具體標注,路網,紅綠燈的位置,當前路段的交通規則等等),這個包含了語義的地圖就是我們無人駕駛車的 高精度地圖(HD Map) 。實際定位的時候,使用當前激光雷達的掃描和事先構建的高精度地圖進行點云匹配,確定我們的無人車在地圖中的具體位置,這類方法被統稱為掃描匹配方法(Scan Matching),掃描匹配方法最常見的是迭代最近點法(Iterative Closest Point ,ICP),該方法基于當前掃描和目標掃描的距離度量來完成點云配準。

除此以外, 正態分布變換(Normal Distributions Transform,NDT) 也是進行點云配準的常用方法,它基于點云特征直方圖來實現配準?;邳c云配準的定位方法也能實現10厘米以內的定位精度。雖然點云配準能夠給出無人車相對于地圖的全局定位,但是這類方法過于依賴事先構建的高精度地圖,并且在開放的路段下仍然需要配合GPS定位使用,在場景相對單一的路段(如高速公路),使用GPS加點云匹配的方法相對來說成本過高。

拓展閱讀: L4 自動駕駛中感知系統遇到的挑戰及解決方案

淺析自動駕駛的重要一環:感知系統發展現狀與方向

無人車的規劃模塊分為三層設計:任務規劃,行為規劃和動作規劃,其中,任務規劃通常也被稱為路徑規劃或者路由規劃(Route Planning),其負責相對頂層的路徑規劃,例如起點到終點的路徑選擇。 我們可以把我們當前的道路系統處理成有向網絡圖(Directed Graph Network),這個有向網絡圖能夠表示道路和道路之間的連接情況,通行規則,道路的路寬等各種信息,其本質上就是我們前面的定位小節中提到的高精度地圖的“語義”部分,這個有向網絡圖被稱為路網圖(Route Network Graph),如下圖所示:

這樣的路網圖中的每一個有向邊都是帶權重的,那么,無人車的路徑規劃問題,就變成了在路網圖中,為了讓車輛達到某個目標(通常來說是從A地到B地),基于某種方法選取最優(即損失最?。┑穆窂降倪^程,那么問題就變成了一個有向圖搜索問題,傳統的算法如迪科斯徹算法(Dijkstra’s Algorithm)和A 算法(A Algorithm)主要用于計算離散圖的最優路徑搜索,被用于搜索路網圖中損失最小的路徑。

行為規劃有時也被稱為決策制定(Decision Maker),主要的任務是按照任務規劃的目標和當前的局部情況(其他的車輛和行人的位置和行為,當前的交通規則等),作出下一步無人車應該執行的決策,可以把這一層理解為車輛的副駕駛,他依據目標和當前的交通情況指揮駕駛員是跟車還是超車,是停車等行人通過還是繞過行人等等。

行為規劃的一種方法是使用包含大量動作短語的復雜有限狀態機(Finite State Machine,FSM)來實現,有限狀態機從一個基礎狀態出發,將根據不同的駕駛場景跳轉到不同的動作狀態,將動作短語傳遞給下層的動作規劃層,下圖是一個簡單的有限狀態機:

如上圖所示,每個狀態都是對車輛動作的決策,狀態和狀態之間存在一定的跳轉條件,某些狀態可以自循環(比如上圖中的循跡狀態和等待狀態)。雖然是目前無人車上采用的主流行為決策方法,有限狀態機仍然存在著很大的局限性:首先,要實現復雜的行為決策,需要人工設計大量的狀態;車輛有可能陷入有限狀態機沒有考慮過的狀態;如果有限狀態機沒有設計死鎖保護,車輛甚至可能陷入某種死鎖。

通過規劃一系列的動作以達到某種目的(比如說規避障礙物)的處理過程被稱為動作規劃。通常來說,考量動作規劃算法的性能通常使用兩個指標:計算效率(Computational Efficiency)和完整性(Completeness),所謂計算效率,即完成一次動作規劃的處理效率,動作規劃算法的計算效率在很大程度上取決于配置空間(Configuration Space),如果一個動作規劃算法能夠在問題有解的情況下在有限時間內返回一個解,并且能夠在無解的情況下返回無解,那么我們稱該動作規劃算法是完整的。

配置空間:一個定義了機器人所有可能配置的集合,它定義了機器人所能夠運動的維度,最簡單的二維離散問題,那么配置空間就是[x, y],無人車的配置空間可以非常復雜,這取決于所使用的運動規劃算法。

在引入了配置空間的概念以后,那么無人車的動作規劃就變成了:在給定一個初始配置(Start Configuration),一個目標配置(Goal Configuration)以及若干的約束條件(Constraint)的情況下,在配置空間中找出一系列的動作到達目標配置,這些動作的執行結果就是將無人車從初始配置轉移至目標配置,同時滿足約束條件。在無人車這個應用場景中,初始配置通常是無人車的當前狀態(當前的位置,速度和角速度等),目標配置則來源于動作規劃的上一層——行為規劃層,而約束條件則是車輛的運動限制(最大轉角幅度,最大加速度等)。顯然,在高維度的配置空間來動作規劃的計算量是非常巨大的,為了確保規劃算法的完整性,我們不得不搜索幾乎所有的可能路徑,這就形成了連續動作規劃中的“維度災難”問題。目前動作規劃中解決該問題的核心理念是將連續空間模型轉換成離散模型,具體的方法可以歸納為兩類:組合規劃方法(Combinatorial Planning)和基于采樣的規劃方法(Sampling-Based Planning)。

運動規劃的組合方法通過連續的配置空間找到路徑,而無需借助近似值。由于這個屬性,它們可以被稱為精確算法。組合方法通過對規劃問題建立離散表示來找到完整的解,如在Darpa城市挑戰賽(Darpa Urban Challenge)中,CMU的無人車BOSS所使用的動作規劃算法,他們首先使用路徑規劃器生成備選的路徑和目標點(這些路徑和目標點事融合動力學可達的),然后通過優化算法選擇最優的路徑。另一種離散化的方法是網格分解方法(Grid Decomposition Approaches),在將配置空間網格化以后我們通常能夠使用離散圖搜索算法(如A*)找到一條優化路徑。

基于采樣的方法由于其概率完整性而被廣泛使用,最常見的算法如PRM(Probabilistic Roadmaps),RRT(Rapidly-Exploring Random Tree),FMT(Fast-Marching Trees),在無人車的應用中,狀態采樣方法需要考慮兩個狀態的控制約束,同時還需要一個能夠有效地查詢采樣狀態和父狀態是否可達的方法。

自動駕駛汽車的車輛控制技術旨在環境感知技術的基礎之上,根據決策規劃出目標軌跡,通過縱向和橫向控制系統的配合使汽車能夠按照跟蹤目標軌跡準確穩定行駛,同時使汽車在行駛過程中能夠實現車速調節、車距保持、換道、超車等基本操作。

互聯網科技公司主要做軟件,以工程機上層為主;而車廠其實以下層的組裝為主,也就是OEM,也不是那么懂車。像制動、油門和轉向等這些領域,話語權依然集中在博世、大陸這樣的Tier 1身上。

自動駕駛控制的核心技術是車輛的縱向控制和橫向控制技術??v向控制,即車輛的驅動與制動控制;橫向控制,即方向盤角度的調整以及輪胎力的控制。實現了縱向和橫向自動控制,就可以按給定目標和約束自動控制車運行。所以,從車本身來說,自動駕駛就是綜合縱向和橫向控制。

車輛縱向控制是在行車速度方向上的控制,即車速以及本車與前后車或障礙物距離的自動控制。巡航控制和緊急制動控制都是典型的自動駕駛縱向控制案例。這類控制問題可歸結為對電機驅動、發動機、傳動和制動系統的控制。各種電機-發動機-傳動模型、汽車運行模型和剎車過程模型與不同的控制器算法結合,構成了各種各樣的縱向控制模式,典型結構如圖所示。

此外,針對輪胎作用力的 滑移率控制 是縱向穩定控制中的關鍵部分?;坡士刂葡到y通過控制車輪滑移率調節車輛的縱向動力學特性來防止車輛發生過度驅動滑移或者制動抱死,從而提高車輛的穩定性和操縱性能。制動防抱死系統(antilock brake system)簡稱 ABS,在汽車制動時,自動控制制動器制動力的大小,使車輪不被抱死,處于邊滾邊滑(滑移率在 20%左右)的狀態,以保證地面能夠給車輪提供最大的制動作用力值。一些智能滑移率控制策略利用充足的環境感知信息設計了隨道路環境變化的車輪最有滑移率調節器,從而提升輪胎力作用效果。

智能控制策略,如模糊控制、神經網絡控制、滾動時域優化控制等,在縱向控制中也得到廣泛研究和應用,并取得了較好的效果,被認為是最有效的方法。

而傳統控制的方法, 如PID控制和前饋開環控制 ,一般是建立發動機和汽車運動過程的近似線形模型,在此基礎上設計控制器,這種方法實現的控制,由于對模型依賴性大及模型誤差較大,所以精度差、適應性差。從目前的論文和研究的項目看,尋求簡單而準確的電機-發動機-傳動、剎車過程和汽車運動模型,以及對隨機擾動有魯棒性和對汽車本身性能變化有適應性的控制器仍是研究的主要內容。

車輛橫向控制指垂直于運動方向上的控制,對于汽車也就是轉向控制。目標是控制汽車自動保持期望的行車路線,并在不同的車速、載荷、風阻、路況下有很好的乘坐舒適性和穩定性。

車輛橫向控制主要有兩種基本設計方法,一種是基于駕駛員模擬的方法;另一種是給予汽車橫向運動力學模型的控制方法?;隈{駛員模擬的方法,一種策略是使用較簡單的運動力學模型和駕駛員操縱規則設計控制器;另一策略是用駕駛員操縱過程的數據訓練控制器獲取控制算法?;谶\動力學模型的方法要建立較精確的汽車橫向運動模型。典型模型是所謂單軌模型,或稱為自行車模型,也就是認為汽車左右兩側特性相同。橫向控制系統基本結構如下圖??刂颇繕艘话闶擒囍行呐c路中心線間的偏移量,同時受舒適性等指標約束。

自動駕駛需要哪些傳感器

【太平洋汽車網】目前,自動駕駛所使用的傳感器主要包括:攝像頭、激光雷達、毫米波雷達、超聲波雷達等。不同廠家會根據自己的產品,選擇不同的組合方案,同時又有所偏重,有的偏重激光雷達,有的偏重攝像頭等。本文主要介紹一下這幾種傳感器。

展開全文想要實現自動駕駛,需要通過三個階段,即感知、決策和控制。感知是基礎,沒有感知所帶來的各種信息也就無所謂控制了。因為車輛對汽車有著部分甚至是全部的控制權,所以自動駕駛汽車對外部情況必須擁有保證達到甚至超過人類感知的精確性,所以傳感器對于自動駕駛汽車的重要性也就不言而喻了。

攝像頭攝像頭就像人的視覺一樣,主要就是記錄圖像,然后發送給自動駕駛系統的計算機,計算機通過圖像識別技術分析數據,進而判斷車輛周圍狀況。

攝像頭由于開發較早,開發人員也比較多,現今技術已經比較成熟,成本也降到了相當低的程度。應用中攝像頭形式包括單目、雙目和三目,根據攝像頭安裝的位置分為前視、后視、環視和車內監控攝像頭。

攝像頭可以實現眾多如預警、識別等ADAS功能,是視覺影像處理系統的基礎,此外,影像信息對于乘客來說更為直觀,在處理意外情況時,是必不可少的。

優點:成本低,技術成熟,而且能夠識別路牌、交通燈甚至是一些文字信息。

缺點:難以獲取準確的三維信息;受環境光限制比較大,遮擋、強光和黑夜等條件下,識別率比較低。

激光雷達激光雷達是目前公認的自動駕駛傳感器最佳的技術路線。激光雷達主要通過向目標物體發射激光束,然后通過計算從目標反射回的脈沖飛行時間來測量距離,以此來測算目標的位置、速度等特征量,感知車輛周圍環境,并形成精度高達厘米級的3D環境地圖,為下一步的車輛操控建立決策依據。

激光雷達多安裝在車頂,通過高速旋轉,實現360度無死角監控,獲得周圍空間的點云數據,實時繪制出車輛周邊的三維空間地圖。

(圖/文/攝:太平洋汽車網問答叫獸)

無人駕駛汽車中有哪些傳感器

本文介紹無人駕駛中幾種主流的環境感知傳感器,包括視覺攝像機、毫米波雷達、超聲波雷達、激光雷達。通過分析對比每種傳感器的原理和優缺點,進一步理解不同場景下如何構建感知方案。

1、感知傳感器

在無人駕駛中,傳感器負責感知車輛行駛過程中周圍的環境信息,包括周圍的車輛、行人、交通信號燈、交通標志物、所處的場景等。為無人駕駛汽車的安全行駛提供及時、可靠的決策依據。

目前常用的車載傳感器包括相機、毫米波雷達、超聲波雷達、激光雷達等。根據各個傳感器的特性,在實際應用中往往采用多種傳感器功能互補的方式進行環境感知。

2、視覺攝像機

傳感器原理

攝像頭屬于被動觸發式傳感器,被攝物體反射光線,傳播到鏡頭,經鏡頭聚焦到CCD/CMOS芯片上,CCD/CMOS根據光的強弱積聚相應的電荷,經周期性放電,產生表示一幅幅畫面的電信號,經過預中放電路放大、AGC自動增益控制,經模數轉換由圖像處理芯片處理成數字信號。

其中感光元器件一般分為CCD和CMOS兩種:CCD的靈敏度高,噪聲低,成像質量好,具有低功耗的特點,但是制作工藝復雜,成本高,應用在工業相機中居多;CMOS價格便宜,性價比很高,應用在消費電子中居多。為了滿足不同功能的視覺需求,有很多不同種類的攝像機。

傳感器分類

組合相機:這里指無人駕駛前視環境感知中常出現的單目/雙目/三目,由不同焦距組成光學陣列,用于探測不同范圍內的目標。

傳統的單目做前視感知一般FOV較小,景深會更遠,能夠探測遠距離障礙物,比如mobileye早期產品采用52°的鏡頭,當然現在主推的是100°攝像頭能夠感知更廣的范圍。

雙目相機利用視差原理計算深度,通過兩幅圖像因為相機視角不同帶來的圖片差異構成視差。雙目立體視覺在測距精度上要比單目做深度估計準確很多。

自動駕駛多傳感器融合概況

? ? ? ? 自動駕駛是高新科技產業發展和智能出行領域的優勢行業,其中的各項技術發展迅速,取得了眾多關鍵成就。其中感知和定位模塊在自動駕駛系統中起著至關重要的作用,自動駕駛汽車必須首先明確自己在真實世界中的位置,明確車身周圍的眾多障礙物,包括動態障礙物和靜態障礙物。其中動態障礙物包括行人、動物、車輛、其他非機動車等;靜態障礙物包括路障、路標、護欄等,可在高精地圖中予以標注,而且必須依賴地圖更新的頻率。而感知部分則充分利用各項傳感器感知周圍環境,并且實時將數據回傳到工業電腦,通過感知模塊的相應模型和算法獲取障礙物的形態、速度、距離、類別等信息,以便規劃和預測模塊預測障礙物的軌跡,做出相應的駕駛決策。無人駕駛汽車通過車載傳感系統獲取道路環境信息后自動規劃行駛路線并控制車輛的速度及轉向,進而實現車輛在道路上安全可靠地行駛。無人駕駛汽車的關鍵技術主要包括對道路環境的感知、對行駛路徑的規劃、對車輛運動行為的智能決策及對車輛實現自適應運動控制。目前環境感知技術發展的不成熟仍舊是阻礙無人駕駛汽車總體性能提高的主要原因,也是無人駕駛汽車進行大規模產品化的最大障礙。

目前應用于自動駕駛感知模塊的傳感器主要有攝像頭、毫米波雷達、超聲波雷達、激光雷達等。攝像頭有著分辨率高、速度快、傳遞的信息豐富、成本低等優勢,依賴深度學習對復雜數據的強大學習能力能極大提高環境感知的分類能力;毫米波雷達有著反應速度快、操作簡單、無視遮擋等優勢,并且能在各種條件下的提供目標有效的位置和速度;激光雷達有著精確的 3D 感知能力、對光線變化不敏感、信息豐富等優勢,圖像數據無法提供準確的空間信息、毫米波雷達擁有極低的分辨率、激光雷達有著十分昂貴的價格。同時,隨著各傳感器性能的提升,單一傳感器帶來了更多的信息,在不丟失有效信息的情況下,提取特征的難度十分巨大。因此,如何高效的處理多傳感器數據并對其進行高效的融合是一項極具挑戰的任務。

? ? ? ?近年來,深度學習在攝像頭數據上取得了驚人的成就,2D 目標檢測速度和精度都得到了極大的提升,證明了深度學習是種有效的特征提取方法。卷積神經網絡模型的發展,極大地提高了提取自動駕駛攝像頭數據特征的速度和能力。有效利用這些高魯棒性、高質量、高檢測精度的圖像特征,基于視覺的無人駕駛汽車也能在 3D 感知任務中獲得不錯檢測結果。深度學習在處理激光雷達數據上也有著不錯的效果,隨著基于稀疏點云數據的網絡的提出,深度學習在點云特性的學習能力上也漸漸超過了一些傳統方法。然而,采用深度學習進行多傳感器融合的時候,仍然存在著融合低效、數據不匹配以及容易過擬合等問題;將多傳感器融合技術應用到自動駕駛障礙物檢測的過程中也存在著檢測精度不夠、漏檢錯檢和實時處理能力不足的情況。由于自動駕駛汽車等級的提高,傳統的多傳感器目標融合已經無法滿足決策對感知的需求,大量感知的冗余信息也對決策帶來了極大的困難。并且由于多傳感器的原始數據間在信息維度、信息范信息量上有著巨大的差異,有效的融合多傳感器信息變得十分困難。

? ? ? ?多傳感器的數據融合包括多傳感器的空間融合以及時間上的同步。傳感器安裝于汽車車身的不同位置,每個傳感器定義了自己的坐標系,為了獲得被測對象的一致性描述,需將不同的坐標系轉換到統一的坐標系上。點云數據和圖像數據的空間融合模型涉及的坐標系包括世界坐標系、激光雷達坐標系、相機坐標系、圖像坐標系和像素坐標系??臻g融合的主要工作是求取雷達坐標系、攝像頭坐標系、圖像物理坐標系、圖像像素坐標系之間的轉換矩陣。然而由于不同傳感器的工作頻率不同,數據采集無法同步,因此還需要根據工作頻率的關系進行多傳感器時間上的融合,通常做法是將各傳感器數據統一到掃描周期較長的一個傳感器數據上。

? ? ? ?自動駕駛感知模塊信息融合又稱數據融合,也可以稱為傳感器信息融合或多傳感器融合,是一個從單個或多個信息源獲取的數據和信息進行關聯、相關和綜合,以獲得精確位置和身份估計,同時也是信息處理過程不斷自我修正的一個過程,以獲得結果的改善。利用多個傳感器獲取的關于對象和環境更豐富的信息,主要體現在融合算法上。因此,多傳感器系統的核心問題是選擇合適的融合算法。? ?

? ? ? ?多傳感器信息融合可以簡單的劃分為:檢測級、位置級(目標跟蹤級)、屬性級(目標識別級)。對于結構模型,在信息融合的不同層次上有不同的結構模型。檢測級的結構模型有:并行結構、分散結構、串行結構、和樹狀結構。位置級的結構模型有:集中式、分布式、混合式和多級式,主要是通過多個傳感器共同協作來進行狀態估計。屬性級的結構模型有三類:對應決策層、特征層和數據層屬性融合。

? ? ? ?檢測級融合是直接在多傳感器分布檢測系統中檢測判決或信號層上進行的融合,對多個不同傳感器的檢測結果進行綜合,以形成對同一目標更準確的判決,獲得任意單個傳感器所無法達到的檢測效果,是信息融合理論中的一個重要研究內容。位置級融合是直接在傳感器的觀測報告或測量點跡或傳感器的狀態估計上進行的融合,包括時間和空間上的融合,是跟蹤級的融合,屬于中間層次,也是最重要的融合。多傳感器檢測融合系統主要可以分為集中式和分布式兩種方式。集中式融合是先將各個傳感器原始數據直接傳輸到融合中心,然后融合中心對這些所有的數據進行處理,最后生成判決。分布式融合是將各個傳感數據進行預處理后,得到獨立的檢測結果,然后所有傳感器的檢測結果再傳到融合中心進行假設檢驗,生成最終的判決。屬性級融合根據多傳感器融合屬性層級的不同主要分為三類,分別是數據層、特征層和目標(決策)層上的融合,方法主要有基于估計、分類、推理和人工智能的方法等。

? ? ? ?數據層融合是對傳感器采集到的原始數據進行融合處理,融合前不會對原始數據進行預處理,而先在數據上進行融合,處理融合后的數據。然后進行特征提取和判斷決策,是最低層次的融合。每個傳感器只是將其原始數據傳輸到融合模塊,然后融合模塊處理來自所有傳感器的原始數據。然后將融合的原始數據作為輸入提供相應的算法。傳統方法中,Pietzsch 等利用低級測量矢量融合用于組合來自不同傳感器的數據,用于預碰撞應用。隨著深度學習的發展,在數據配準的情況下,也可以利用深度學習對配準后的數據進行學習。此類融合方法要求所融合的各傳感器信息具有非常高的配準精度。這種融合處理方法的優點是提供其它兩種融合層次所不能提供的細節信息,可以通過融合來自不同來源的原始數據在很早的階段對數據進行分類但是所要處理的傳感器數據量大,處理時間長,需要很高的數據帶寬,實時性差,抗干擾能力差,并且在實踐中可能很復雜,且數據融合由于原始數據采用不同格式和不同傳感器類型,要求傳感器是同類的。因此在架構中添加新傳感器需要對融合模塊進行重大更改。

? ? ? ?因此一些研究者開始引入了特征層融合的思想。與直接使用來自不同傳感器的原始數據進行融合不同,特征級融合首先分別對各自數據進行特征提取,然后對提取的特征進行融合處理。特征級融合需要對傳感器采集到的數據作提取特征處理,抽象出特征向量,然后對特征信息進行處理,最后到融合后的特征,用于決策,屬于中間層次的融合。其優點在于有助于提高實時性,降低對通信寬帶的要求。特征級融合提供了更多的目標特征信息,增大了特征空間維數。融合性能有所降低的原因是由于損失了一部分有用信息。特征級融合的實現技術主要有:模板匹配法、聚類算法、神經網絡和支持向量機(Support Vector Machine, SVM)等。大多數基于深度學習的方法也是利用神經網絡提取特征,對不同傳感器提出的特征之間做級聯或者加權,如 RoarNet、AVOD、MV3D、F-PointNet等。特征級融合的主要優點是它能夠減少傳感器數據到融合模塊的帶寬,并且可以通過提升特征的互補性來提升效果。特征級融合保留了低級融合的相同分類和預處理能力,允許相關數據類似地有效地集成到跟蹤算法中。

? ? ? ?目標(決策)層融合架構與低級融合相反。每個傳感器分別進行目標檢測算法,并產生跟蹤目標列表。然后,融合模型將這些目標與一個目標跟蹤序列融合相關聯。對每個傳感器進行預處理、特征提取、識別或判決,最后得到的初步決策進行融合判斷,因此是最高層次的融合。決策級融合可以在同質或異質傳感器中進行融合。決策級融合的優點與不足恰好和數據級相反,目標級融合的主要優勢在于其模塊化和傳感器特定細節的封裝。并且通信量小,有一定的抗干擾能力,處理代價低,選用適當融合算法,可以將影響降到最低;主要缺點:預處理代價高,數據信息處理效果比較依賴于預處理階段的性能。常用的方法有:專家系統方法、模糊集合論、貝葉斯推理、D-S 證據理論等?,F階段大多數目標層融合的目標檢測方法十分低效,不適用于自動駕駛汽車對檢測時間的要求。同時,特征層和數據層的融合也需要更多的考慮各自數據形式。

? ? ? ?目前大多數多傳感器融合研究集中于圖像數據與多線激光雷達,然而,只基于攝像頭的自動駕駛感知系統,缺乏空間信息的維度,無法精確的恢復空間信息的位置。攝像頭易受到光線、探測距離等因素的影響,當檢測遠距離目標的時候,只能給出分辨率極低的信息,甚至人的肉眼無法分辨,導致無法標注或錯誤標注的問題,無法穩定地應對復雜多變的交通環境下車輛檢測任務,無法滿足無人駕駛汽車穩定性的要求。因此,自動駕駛目標檢測需要更多的傳感器。而激光雷達具有探測距離遠、不受光線影響并且能夠準確獲得目標距離信息等優點,能夠彌補攝像頭的缺點。當目標被識別時,可判斷此時檢測框內有無點云,來決定是否修正相應的識別置信度。雷達點云數據與圖像數據的融合不僅能獲得準確的目標的深度信息,還能降低圖像檢測時的漏檢的概率,達到了融合數據以提高檢測效果的目的,通過這種多視圖的編碼方案能夠獲得對稀疏3D點云更有效和緊湊的表達。

? ? ? ?由于視覺圖像獲取較易、處理方法多樣,所以視覺技術是現階段自主車輛研究中的主要獲取信息手段。其中視覺技術主要分為單目視覺和雙目視覺。單目視覺識別技術多采用基于車輛特征的方法,該方法主要利用車輛與背景有差異的特征,如紋理、邊緣和底部陰影等。但這種方法獲取的信息量不足,缺乏深度信息,而且易受外部環境的干擾,諸如光照和陰影等因素。雙目視覺識別技術雖然可以取得較好的效果,但其計算量較大,算法復雜,難以保證車輛識別的實時性。激光雷達能夠獲得場景的距離信息,不易受光照等外部條件的影響,但其獲取的外部信息不充分,易造成誤判。因為圖像具有較好的橫向紋理特征,點云能夠提供可靠的縱向空間特征,故而采用多傳感器融合技術可以克服單一傳感器獲取信息量不足,探測范圍小的缺點。隨著自動駕駛和深度學習技術的發展,多傳感器融合相關技術得到了極大的推動。多傳感器融合技術基本可概括為:對于不同時間和空間維度的多傳感器信息,依據融合準則,對這些信息進行分析,獲得對被測量的目標一致性描述與解釋,進而實現后續的決策和估計,使融合結果比單獨獲取的結果更加豐富與準確。在自動駕駛領域,卡爾曼濾波算法、D-S 證據理論等傳統多傳感器融合算法仍然發揮著十分重要的作用。但隨著深度學習快速發展,端到端的數據融合也成為自動駕駛不可或缺的方法。

? ? ? ?現有的融合方案有些僅用于輔助確認目標的存在性,例如在激光雷達返回有目標的大致區域進行相應的視覺檢測;有些使用了統一框架進行融合,如在基于卡爾曼濾波框架下,對于不同傳感器賦予了不同的協方差,并在任意一個傳感器獲得目標數據后進行序貫更新。這些方案均可以實現多傳感器數據融合,但由于只是將不同傳感器等同看待而進行融合,方法雖然直接但低效,因而效果有較大提升空間。在基于純視覺的 3D 目標估計中,估計的距離屬性極其不穩定,而通過多傳感器的融合,對視覺信息進行修正,極大的提高自動駕駛的目標檢測精度。 在目標層的融合攝像頭和激光雷達信息不能滿足自動駕駛的要求。

參考:

? ? ? ? 廖岳鵬(基于多傳感器的自動駕駛目標檢測)? ? ? ? ? ? ? ???????? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??????? CVPR_2017 :?Multi-view ?3d ?object ?detection ?network ?for ?autonomous driving;

自動駕駛各傳感器的優缺點的介紹就聊到這里吧,感謝你花時間閱讀本站內容,更多關于主流自動駕駛汽車一般有幾種傳感器、自動駕駛各傳感器的優缺點的信息別忘了在本站進行查找喔。

掃碼二維碼
人妻一区二区三区_国产精品无码毛片久久久_精品无码久久久久久囯产_久久精品亚洲AV日韩AV

<b id="sidpw"></b>

<b id="sidpw"></b><tt id="sidpw"><address id="sidpw"></address></tt>
<tt id="sidpw"></tt>

<b id="sidpw"></b>

<b id="sidpw"></b>